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Coarsening of sand ripples in mass transfer models
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Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples
exchange mass with algebraic rates,G(m);mg, and ripples of zero mass are removed from the system. For
g,0, ripples vanish through rare fluctuations and the average ripple mass grows as^m&(t);2g21ln(t).
Temporal correlations decay ast21/2 or t22/3 depending on the symmetry of the mass transfer, and asymptoti-
cally the system is characterized by a product measure. The stationary ripple mass distribution is obtained
exactly. Forg.0, ripple evolution is linearly unstable, and the noise in the dynamics is irrelevant. Forg
51, the problem is solved on the mean-field level, but the mean-field theory does not adequately describe the
full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with
respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the
model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggreg
tion.
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I. INTRODUCTION AND MOTIVATION

When a surface of sand is exposed to wind or water flo
patterns such as ripples or dunes are commonly formed.
physics of this process is extremely complex because it
volves the interaction of a granular medium with a possib
turbulent hydrodynamic flow@1#. It is therefore desirable to
develop simplified models that capture some of the key f
tures of the pattern formation.

In this paper we are concerned with a class of mod
which focus on the role of the mass transfer in the evoluti
of the pattern. Along a one-dimensional cut perpendicular
the ripples, the pattern is described by a set$l i% of ripple
lengths, where the indexi labels the ripples in the array. Th
l i are used here as a general measure of ripple size, with
reference to the detailed geometry of individual ripples~see
Fig. 1!. In particular, we do not distinguish between the lin
ear size of a ripple and the mass it contains~for further
discussion of this point see@3#!.

During the evolution of the patterns, the flow transfe
mass between neighboring ripples. The central assumptio
the model is that the mass transferred to ripplei from ripple
i 11 or i 21 ~per unit time! is a functionG(l i) of the size of
the ripple which gains the mass. Further motivation for th
assumption will be given below. We refer toG(l) as the
robber function.1

Depending on the characteristics of the flow, the ma
transfer between ripples can be symmetric or asymmetric
the symmetric case the balance between loss and gain
cesses for a given ripple leads to the evolution equation@3#

*Electronic address: ehe@fyslab.hut.fi
†Electronic address: jkrug@Theo-Phys.Uni-Essen.DE
1This term was suggested to us by Ko van der Weele.
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dl i
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1

2
@2G~l i 21!12G~l i !2G~l i 11!#, ~1!

while in the asymmetric case~assuming, say, mass transfe
only to the left! one has

dl i

dt
52G~l i 21!1G~l i !. ~2!

The factor 1/2 in Eq.~1! makes the time scales for both the
dynamics equal.

A homogeneous state of equally sized ripples,l i[l̄, is
stationary under Eqs.~1! and~2!, but its stability depends on
the derivative of the robber function: The pattern is stable f
G8(l̄),0 and unstable forG8(l̄).0 @3#. In the unstable
case the dominant mode is a modulation of period 2,
which every second ripple grows and every second o
shrinks. As the size of the shrinking ripples reaches zero in
finite time, the evolution equations~1! and ~2! have to be
supplemented by anextinction rule: When the size of a ripple
vanishes, it is removed from the system and the remaini
ripples are relabeled such that the previous neighbors of
removed ripple become neighbors of each other. Extincti
events contribute to thecoarseningof the pattern, i.e., to an
increase of the mean wavelength. In this work the rever
process of ripple creation is not considered, hence coarsen
is irreversible.

The symmetric mass transfer model~1! was first proposed
as a description of vortex ripples in coastal waters, which a
created under the oscillatory flow of surface waves@3#. In
that context the dependence of the robber function on t
size of the gaining ripple is motivated by the observation th
the mass transfer is effectuated mostly by a separation vor
that appears in the wake of that ripple. Numerical simul
tions @3# and experiments@2# show thatG(l) is nonmono-
©2002 The American Physical Society1304-1
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tonic, with a maximum nearl5a, wherea is the amplitude
of the fluid oscillations. Thus patterns of waveleng
l̄,a(l̄.a) are unstable~stable!, and the main interest is i
the wavelength selection process starting from a short w
length, unstable state@2–4#.

A related, asymmetric mass transfer model for w
driven sand ripples was introduced in@5#. The basic hypoth-
esis of the model is that wind ripples wander with a spe
that is inversely proportional to their size. This implies tha
leading ripple~ripple i 11) is eroded by the trailing ripple
~ripple i ) at a rate which is proportional to 1/l i , so the
resulting evolution equation is of the type~2! with G(l)
;1/l. SinceG8(l),0, the homogeneous pattern is stab
However, when fluctuations are included by discretizing
ripple sizes and implementing a stochastic mass transfer
a fluctuation-driven coarsening mechanism becomes e
tive and leads to an increase of the mean wavelength
time t as lnt.

In this paper we consider a class of stochastic mod
whose noiseless counterparts are described by~1! or ~2!. We
concentrate on monotonic, algebraic robber functionsG(l)
;lg and study the coarsening process regardingg as a vari-
able parameter. Forg,0 this extends the results of@5# on
fluctuation-driven coarsening. The caseg.0 is a simple re-
alization of linearly unstable ripple evolution, and it is stu
ied here as a first step towards a better understandin
models with nonmonotonic robber functions@2–4#. Although
the models are defined using the terminology of sand ripp
they are connected to other problems in nonequilibrium
tistical physics. For example, forg50 the system maps t
coalescing random walks and is therefore exactly solva
Other equivalences include exclusion processes, zero-r
processes, urn models, and cluster-cluster aggregation.

Our main results are the following. In general, one c
identify two time scales in the dynamics: The one of ripp
extinctions and the other at which the system would equ
brate to a steady state in the absence of extinctions. Fg
,0 the loss of a ripple is a rare fluctuation when the me
ripple size is large. Therefore the two time scales are w
separated, and the system has time to relax to a quasis
state between ripple extinctions. We show that this stat
characterized by a product measure. This justifies the m
field assumption made in@5#, and allows us to calculate th
stationary ripple size distribution. The product measure
comes exact only at the limitt→` as the correlations in th
system decay as a power law. The average ripple size g
logarithmically at late times, with a prefactor2g21.

For g.0, extinctions are frequent events which occur
the same time scale as the evolution of the surviving ripp
We find in this case that the noise is irrelevant, so that

FIG. 1. Experimental image of vortex ripples in a on
dimensional annular geometry, published in@2#. The amplitude of
the fluid oscillations is denoted bya. The line above the patter
shows a fit of triangles with a constant slope. Courtesy of K.
Andersen.
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dynamics can be described by Eqs.~1! and ~2!. For 0,g
,1 the mean ripple size grows algebraically with the expo
nent 1/(12g), while the growth is exponential forg51. In
the latter case the evolution equations become linear, and
problem can be solved exactly on the mean-field level. Th
mean-field theory reproduces the exponential growth for th
mean ripple size, but incorrectly predicts a dependence of t
ripple size distribution and the coarsening law on the initia
conditions.

In the following section the model is introduced and its
relations to other models are discussed. Algebraically deca
ing robber functions (g,0) are considered in Sec. III. The
product form of the mass distribution is derived in Sec. III A
the coarsening law is calculated in Sec. III B, and the ap
proach to the product measure is analyzed in Sec. III C. Se
tion IV is devoted to algebraically growing robber functions
(g.0). The mean-field theory is first developed forg51
and then compared to simulations~Sec. IV A!. Section IV B
examines the case 0,g,1. Conclusions and open questions
are formulated in Sec. V.

II. THE STOCHASTIC RIPPLE MODEL

A. Definition and simulation algorithm

In the stochastic model a sand ripple is characterized b
its massm. The mass variables are integers such that ea
ripple consists ofmi elementary mass units and occupies
site i on a one-dimensional lattice. The mass is conserve
i.e., Mª( imi5const. Themi correspond to the length vari-
ablesl i used in Eqs.~1! and~2!. As mentioned in the Intro-
duction, the mass and the length of ripples are here cons
ered to be indistinguishable. We use different symbols fo
two reasons. We want to make a clear distinction between~i!
the real and integer valued ripple sizes and~ii ! between the
deterministic and noisy dynamics.

Ripples interact only by exchanging mass with their nea
est neighbors at an algebraic mass transfer rateG(m)
5G0mg. Since the constantG0 affects only the time scale it
will be set equal to unity from now on. If ripples obtain mass
only from one of their neighbors the mass transfer is calle
~totally! asymmetric. If the mass comes from both neighbor
we call the dynamics symmetric. The removal of ripples i
done such that lattice sites containing no mass are eliminat
from the system.

In the simulations three different initial conditions are
used. As random initial conditions we denote the case
which the probability to have a ripple of sizem is given by
the geometric distribution (12q)qm21, with 0,q,1. The
probability q is related to the mean ripple size as^m&5(1
2q)21. A distributionmi5^m&; i is referred to as monodis-
perse. The third possibility is a Poisson distribution.

In the dynamical evolution a ripple is first selected ran
domly and time is incremented byN(t)21Gmax

21 , whereN(t)
is the number of ripples andGmax is the maximum of all the
rates of the ripples in the system at timet. Denote the mass
of the selected ripple bym. If x,G(m)/Gmax, wherex is a
uniformly distributed random number in the interval@0,1#,
the ripple gets a unit mass from its nearest neighbor. Othe
wise a new ripple is selected and the process is repeated.

e-

H.
304-2



o

i

e

o

o

h

m

m

n

t

i

c

of

an-

g

is
or-
e
of

re
ce
-

of
f
n

In

t
-
n
-

g

s.

-
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symmetric dynamics the neighbor is selected rando
whereas in the asymmetric case it is always the right on

B. Relation to other models

In the case of asymmetric dynamics and forg521 our
model reduces to the worm model originally introduced
describe the coarsening of wind ripples@5#. Apart from the
extinction step, the sand ripple model is also similar t
zero-range process@6–8#. Both models are defined in term
of conserved, integer mass variablesmi which interact
through the exchange of unit masses between nearest n
bor sites of a lattice. The key difference is that in a ze
range process the mass transfer rate is a function of the
at the site ofdeparture, while in the sand ripple model
depends on the mass at thetargetsite. This reverses the sig
of the right hand sides of Eqs.~1! and ~2!, and hence th
stability properties of the model. The coarsening behavio
zero-range processes with a nonmonotonic robber functi
relevant to clustering in granular gases@9#.

The occurrence of irreversible extinction events in
model is reminiscent of certain urn models that have b
proposed in the context of glassy dynamics@10#. In these
modelsM particles are distributed amongN boxes withmi
particles in thei th box. In contrast to the ripple model, t
urn models have no spatial structure, i.e., mass transf
possible between any pair of boxes. In the standard dyn
cal scheme one of the balls is chosen at random and a
to another box is attempted@10#. In our setting this corre
sponds to a mass transfer rateG(mi);mi , wherei is the site
of departure; in this respect the urn models are related
zero-range processes. The extinction corresponds to dyn
cal rules, where boxes are not refilled once they have bec
empty. This is the case, for example, in the backgam
model @11# at zero temperature.

The sand ripple model can also be mapped to an exclu
process@7,12,13# along the lines of@14#. The mapping ca
be done in two ways which differ in how the disappeara
of ripples is taken into account. The first alternative is sc
matically presented in Fig. 2. One constructs a new la
with L(t)5M1N(t) sites. The mass variablesmi of the
ripples turn tomi consecutive holes separated by particles
sites i 1(k51

i mk @ i 51, . . . ,N(t)#. Moving one mass un
from one ripple to its neighbor corresponds to a hop o
particle, and the loss of a ripple becomes a coalescen

FIG. 2. Mapping between the asymmetric worm model and
exclusion process with coalescence.
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particles at contact, which changes the lengthL(t) of the
system.

For negative~positive! g there is a repulsive~attractive!
interaction between the particles. For the marginal case
mass independent transfer rates (g50) the interaction van-
ishes and the exclusion process reduces to coalescing r
dom walkers, which can be solved exactly@15#. The most
relevant results for our case are~i! the average ripple mass
grows asymptotically aŝm&(t);At and ~ii ! the ripple size
distribution ~the probability of finding a ripple of massm at
time t) can be written in a scaling form asp(m;t)
5m21G(m/^m&), where the scaling functionG(x)
5 1

2 px2e2px2/4.
A length conserving mapping is obtained by considerin

the model with ripple extinction but without the removal of
empty lattice sites. To avoid creation of new ripples mass
transferred over these sites. In the exclusion process this c
responds to a hop of a particle over all the particles in th
same cluster, which can be considered as moving a cluster
particles as a whole~see Fig. 3!. In this way our model
further maps to a cluster-cluster aggregation process whe
each cluster moves with a rate that depends on the distan
to its neighbor~s!. One-dimensional cluster-cluster aggrega
tion models generally obey universal dynamical scaling~see
@16# and references therein!, which will be seen to be the
case also for the sand ripple model.

III. NOISE-INDUCED COARSENING „gË0…

It is known from the mean-field analysis of@5# that for
g521 the average ripple size grows as^m&(t)' ln(t
1ê m&(0)). Intuitively, the slow growth follows from the fact
that, forg,0, the ripples near extinction are those with the
highest incoming mass rates. Therefore the disappearance
a ripple involves a rare fluctuation; within the approach o
@5#, the mass of a ripple evolving in a background of mea
mass^m&(t) performs a random walk that is biased away
from zero.

We base our theoretical analysis on this observation.
what follows, we will assume that at long times, i.e., for
large^m&, the extinction of a ripple is such a rare event tha
it does not affect the ripple size distribution. Neglecting ex
tinctions, we show that the steady state distribution is give
by a product measure. After validating the quasistatic ap
proximation by simulations, we use it to show that to leadin
order in t the average ripple mass grows aŝm&
;2g21ln(t). Finally we consider the approach to the
product measure by studying nearest neighbor correlation

the

FIG. 3. Mapping between the worm model, the asymmetric ex
clusion process~ASEP!, and the cluster-cluster aggregation~CCA!.
304-3
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A. Mass distribution

Without extinctions the ripple size distribution can b
solved exactly. This is due to the short range of interactio
between ripples: The mass transfer rate depends only on
mass at the target site. As was noted above in Sec. II B,
is similar to the zero-range process, where the rate depe
only on the site of departure. The most important charac
istic of a zero-range process is that its steady state is
scribed by a product measure@8#. This was shown to gener
alize to processes where the transition rate is a produc
functions of the occupation numbers at the site of depart
and the target site@17#. As our model is a special case of th
class of models, the results of@17# apply here as well. For
completeness we give a brief derivation.

The product measure property implies that the station
probability distribution P($mi%) of finding the system in
configuration$m1 ,m2 , . . . ,mN% factorizes as

P~$mi%!5)
i

p~mi !, ~3!

wherep(mi) is the probability of finding massmi at sitei. In
the steady state there are no correlations between the ri
sizes. Starting from the master equation forP($mi%) and
using the product measure~3!, one obtains for the asymmet
ric case~the calculation is not presented here since up
index changes it is identical to that presented in@8#!

p~mi !p~mi 11!G~mi !5p~mi11!p~mi 1121!G~mi 1121!.
~4!

The condition~4!, known as pairwise balance@18#, gen-
eralizes the detailed balance condition familiar from equil
rium statistical mechanics. It has a simple interpretation. T
left hand side of Eq.~4! represents the mass transfer to t
site i, which has to be balanced by a transfer out of this s
~the right hand side! in order to be in the steady state. Th
first two terms give the probability to find a massmi at sitei
with a right neighbor with massmi 11 and the last term de-
scribes the rate at which the sitei gains mass from its neigh
bor. We emphasize that, provided a solution to Eq.~4! can be
found, this proves that the product measure~3! is an exact
stationary solution of the master equation; on the basis
general arguments, this solution is then also expected to
unique.

Proceeding similarly for the symmetric dynamics giv
~transitions $ . . . ,mi 21 ,mi ,mi 11 , . . . %→$ . . . ,mi 21 ,mi
11,mi 1121, . . .% and $ . . . ,mi 2121,mi11,mi 11 , . . . %
→$ . . . ,mi 21 ,mi ,mi 11 , . . . %)

p~mi 21!p~mi !p~mi 11!G~mi !

5p~mi 2121!p~mi11!p~mi 11!G~mi 2121!. ~5!

Sincep(mi 11) cancels out we end up with Eq.~4!. Therefore
the steady state distribution is independent of the asymm
of the dynamics.

Equation~4! can be recast as
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p~mi !G~mi !

p~mi11!
5

p~mi 1121!G~mi 1121!

p~mi 11!
, ~6!

wherea must be a constant. Denotingp(0)5p0 and recur-
sively iterating Eq.~6!, we obtain

p~m!5p0am )
i 51

m21

G~ i !5p0am@~m21!! #g, ~7!

where the product form51 is defined to give unity and the
last form follows from the definitionG(m)5mg.

The unknown constantsp0 and a can be determined by
the normalization(m50

` p(m)51 and the expectation value
^m&ª(m50

` mp(m). Explicit results forg521 and22 can
be found in the Appendix A; forg521, Eq.~7! is a~shifted!
Poisson distribution. In general, the distribution for^m&@1
can be written as

p~m!5C2~g!eg^m&^m&2gm2(12g)/2@~m21!! #g, ~8!

where the explicit form ofC2(g) is not important for our
purposes. Using the form given in Eq.~8!, it is easy to show

that the widthsªA^m2&2^m&2 of the distribution behaves
ass;A^m& independent ofg.

The calculated distributions are compared to numerics
Figs. 4 and 5. The average ripple mass is not a constan
the simulations include also ripple extinctions. The excelle
agreement at long times shows that indeed these becom
rare that between subsequent extinctions the system has
to equilibrate to the steady state. Note that all initial dist
butions converge to the universal distributionp(m;t) given
by Eq. ~8!, where the time dependence enters only throu
the mean ripple masŝm&(t).

FIG. 4. The ripple size distributions obtained from simulation
for g521 at t54 (3),256 (L),16 384 (¹), and 209 7152
(h) together with the analytical result~solid lines! @Eqs.~A2! and
~A3!#. The initial distribution att50 is a random one and simula
tions are averaged over 2000 runs for a system of sizeM550 000.
The dashed line shows the asymptotic solution given by Eq.~8! for
t52 097 152.
04-4
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B. Coarsening law

Next we proceed to calculate the mean ripple s
^m&(t) using an approach similar to the analysis of the ba
gammon model@10#. We assume that, at long times, th
probability for a given ripple to vanish is equal to the pro
ability p(0) obtained by extrapolating the steady state pro
ability distribution ~8! to m50. The numberN of ripples
then decays according todN/dt'2p(0)N. Since ^m&(t)
5M /N(t) we obtain

d^m&~ t !

dt
'p~0!^m&~ t !;eg^m&^m&2(12g)/2, ~9!

which to leading order int gives

^m&~ t !'2g21ln~ t !. ~10!

Simulations with different initial conditions are in accor
with Eq. ~10! ~Fig. 6!.

C. Decay of correlations

The product measure for the ripple size distribution im
plies that there are no correlations between neighbor
ripples. This is true only asymptotically. To study the a
proach to the product measure distribution we consider
normalized nearest neighbor time correlation function

g~ t !ª
^mimi 11&2^m&2

^m&2
. ~11!

As is clear from Fig. 7, the early time behavior is sensitive
the details of the initial distribution. In this regime it is pos
sible to have positive correlations between neighbor
ripples, but at long times there will always be anticorre
tions, i.e.,g(t),0. The numerically observed correlation
seem to be independent of the initial conditions and vanish
a universal manner as

FIG. 5. The ripple size distributions obtained from simulatio
for g520.5 att54 (3),128 (L),4096 (¹), and 131 072 (h)
together with the analytical result~solid lines! @Eq. ~7!#. The initial
distribution att50 is a random one and simulations are averag
over 500 runs for a system of sizeM550 000. The dashed line
shows the asymptotic solution given by Eq.~8! for t5131 072.
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g~ t !;2t21/2 ~12!

for both symmetric and asymmetric dynamics.
At first sight one may be tempted to relate the decay

correlations to the extinction events that perturb the produ
measure. However, as was shown in Sec. III B, the probab
ity of extinction events decays asp(0);eg^m&(t);t21,
which is much faster than the numerically observed dec
law ~12!. This implies that the power law~12! is associated
with the dynamics between extinction events, which can
described using standard hydrodynamic fluctuation theo
for a one-dimensional system with a single conserved de
sity.

Let f(x,t) denote the coarse grained mass fluctuations
the ~quasi-! steady state of mean mass^m&. The long wave-
length behavior off is governed by a Langevin equation o
the generic form@19#

s

ed

FIG. 6. The growth of the average ripple mass a function of tim
for g520.5 (*),20.75 (L),21 (D),21.5 (s), and 22
(h). The least squares fits are shown by solid lines. The ins
compares the fitted prefactors (s) to the analytic result2g21

~solid line!. The system sizes range from 50 000 to 100 000 a
averages are taken over at least 50 independent runs.

FIG. 7. The nearest neighbor correlation functiong(t) for g
521. The initial condition is random@^m&(0)52,h;^m&(0)
51.2,j#, monodisperse@m(0)55,L# or Poisson distributed
@^m&(0)55,s;^m&(0)510,D#. Open ~filled! symbols correspond
to asymmetric~symmetric! dynamics. The inset shows the decay a
late times for the random case. The solid and dashed lines
guides to the eye with slopes21/2 and22/3, respectively.
04-5
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]f

]t
5n

]2f

]x2
2mf

]f

]x
2

]h

]x
, ~13!

where h(x,t) is Gaussian white noise with covarianc
^h(x,t)h(x8,t8)&5Dd(x2x8)d(t2t8). For mÞ0, Eq. ~13!
is the noisy Burgers equation@20#, which has been widely
studied in the context of driven diffusive systems@19# and
interface growth@21–23#.

The coefficientsn,m, andD appearing in the long wave
length description can be related to the microscopic dyna
ics of the sand ripple model as follows. The nonlinear te
on the right hand side of Eq.~13! is generated by the asym
metry, and its coefficient is given bym5 j 9(^m&), wherej is
the steady state mass current. Since in our casej 5G, we
conclude thatm;^m&g22. In the symmetric casem50 and
the diffusion coefficientn is proportional toG8;^m&g21

@this can be seen by expanding Eq.~1! around the homoge-
neous state#. Finally, owing to a fluctuation-dissipation theo
rem@20#, the equal time correlations of Eq.~13! are Gaussian
with covariancê f(x)f(x8)&;(D/n)d(x2x8) independent
of m. As we have shown above in Sec. III A, in the ripp
model the variance of the mass fluctuations is always of
der ^m&, henceD/n;^m&.

We want to use Eq.~13! to describe the approach to th
steady state, starting from some initial condition~e.g., the
monodisperse statef[0) specified att50. The analysis of
Eq. ~13! shows that at long times, and forxÞx8, the pair
correlation function takes the scaling form@22,23#

^f~x,t !f~x8,t !&5
D

n

1

j~ t !
G„j~ t !21ux2x8u…. ~14!

Here G is a scaling function andj(t) denotes the dynamic
correlation length. The prefactor of the scaling function
the right hand side of Eq.~14! is fixed by the requirements
that ~i! the steady state density fluctuations are proportio
to D/n and~ii ! the integral over the pair correlation functio
is constant due to mass conservation. The correlation len
grows diffusively asj(t);(nt)1/2 for m50 and superdiffu-
sively asj(t);@(D/n)1/2mt#2/3 for mÞ0.

Keeping ux2x8u fixed and takingt→`, we see that the
pair correlations~14! decay as (D/n)G(0)j(t)21. Express-
ing n and D/n in terms of the mean ripple mass, we co
clude that in the symmetric case (m50) the normalized cor-
relation function~11! should decay as

g~ t !;
^m&2(11g)/2

t1/2
;

~ ln t !2(11g)/2

t1/2
. ~15!

For g521 the logarithmic factor disappears and Eq.~15!
becomes a pure power law with exponent21/2, in accor-
dance with the simulation results shown in Fig. 7. Moreov
the explicit calculation for the diffusive case shows that t
scaling functionG in Eq. ~14! is negative, henceg(t),0 as
is observed numerically.

In the asymmetric case the fluctuation theory predicts
asymptotic decay asg(t);1/j(t);t22/3, with logarithmic
corrections due to the growth of^m&(t). However, this be-
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havior is expected to set in only beyond a crossover tim
scalet3;n5/(D2m4) @23#, which for the ripple model takes
the form t3;^m&32g;(ln t)32g. For the caseg521 con-
sidered in Fig. 7, this implies that superdiffusive behavior
can be expected only for times such thatt/( ln t)4@1. The left
hand side of this inequality becomes equal to unity fort
'5500 and reaches the value 10 only fort'235 000. The
slight deviation of the simulation data from thet21/2 behav-
ior seen aftert5105 may indicate the beginning of the cross-
over.

IV. UNSTABLE COARSENING „gÌ0…

For g.0 the homogeneous state is linearly unstable be
cause the largest ripples are those with the highest grow
rate. Ripple extinction is then no longer a rare event, and th
product measure solution derived in Sec. III A becomes in
valid. On the other hand, it is plausible~and will be con-
firmed by simulations, see below! that the linear instability
supersedes the noise in the time evolution, so that the dete
ministic equations~1! and~2! and the stochastic ripple model
show the same behavior.

In what follows, we first develop a mean-field theory for
the deterministic model in the simplest case of a linear rob
ber function (g51). Simulations show that the mean-field
theory is not quantitatively correct, presumably due to the
neglect of spatial fluctuations. In the nonlinear regime 0
,g,1 we use scaling analysis to derive the coarsening law

A. Mean-field analysis for gÄ1

We start our analysis from the deterministic equations~1!
and~2!. For g51 these become linear but the system is stil
nontrivial due to the ripple extinction. As the system is de-
terministic, the only randomness lies in the initial condition.
We denote the initial ripple size distribution byP0(l0) and
its average byl̄0.

The mean-field approximation consists of replacing the
ripples surrounding an arbitrary ripple of sizel by ripples of
the average sizêl&, such that the evolution equation be-
comes

dl

dt
5G~l!2G~^l&!5l2^l&. ~16!

On this level there is no difference between symmetric an
asymmetric mass transfer. The solution of Eq.~16! reads
l(l0 ,t)5et@l02F(t)#, where the function

F~ t !ªE
0

t

dte2t^l&~t! ~17!

has to be calculated self-consistently. Note that at this poin
we do not explicitly restrictl(t) to be non-negative~this
constraint will enter later!. OnceF(t) is known, the ripple
size distribution at timet can be obtained by inverting the
solution forl(l0) and inserting this into the initial distribu-
tion, with the result

p~l;t !5e2tP0„e
2tl1F~ t !…. ~18!
304-6
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Thus in the mean-field approximation the ripple size dis
bution preserves its initial shape but gets scaled and sh

It is possible to derive a differential equation for the u
known functionF(t). The fractionr(t) of surviving ripples
is equal to the probability thatl(t).0,

r~ t !5E
0

`

dlp~l;t !5E
F(t)

`

dxP0~x!5:P0
c
„F~ t !…, ~19!

where the last equation defines the cumulative distribu
P0

c . The average ripple size is given by^l&(t)5l̄0 /r(t).
Inserting this into the definition ofF(t) and differentiating
once gives

dF~ t !

dt
5

e2tl̄0

P0
c
„F~ t !…

. ~20!

Hence the problem reduces to solving the differential eq
tion ~20! for a given initial distributionP0(l).

For example, for an exponential initial distributi
P0(l0)5l̄0

21e2l0 /l̄0, we findF(t)5l̄0t and^l&(t)5l̄0et,
whereas for a flat distribution

P0~l0!5H ~2l̄0!21, l0<2l̄0,

0, otherwise,
~21!

the solution is given byF(t)52l̄0(12e2t/2) and ^l&(t)
5l̄0et/2. As the rate of exponential growth is different
these two cases, we conclude that the coarsening behav
the mean-field model~16! is nonuniversal.

In general, the exponential growth rate of the mean rip
size is governed by the extremal statistics of the initial
tribution P0. If the initial ripple sizes are bounded by a ma
mal size lmax, and P0(l0);(lmax2l0)a for l0→lmax,
then the analysis of Eq.~20! shows thatt21ln^l&(t)→(a
11)/(a12), while for fat initial distributions with a powe
law tail, P0(l0);l0

2(b11) , we find t21ln^l&(t)→b/(b21).
To compare the predictions of the mean-field theory

simulations we prefer to show the cumulative distributio

I ~l;t !ªE
l

`

dxp~x;t !5..f S l

^l&~ t ! D , ~22!

where the last equation defines the scaling functionf (x). A
similar definition applies top(m;t) with the integral re-
placed by a sum. In the case of an exponential distribu
p(l;t) also the functionf (x) is exponential whereas for
flat p(l;t) it is linear.

We solved the deterministic equations~1! and ~16! using
the fourth-order Runge-Kutta method@24#. As a check of the
algorithm, we reproduced the solution~18! of the mean-field
equations. For the full noiseless system~1! the exponentia
initial distribution remains unchanged@Fig. 8~a!; dashed
lines# but also a flat initial distribution presumably a
proaches the exponential one@Fig. 8~b!; dashed lines#. This
is in conflict with the mean-field prediction. In both cases
average ripple size grows as^m&(t);et.
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Similarly, in the discrete, noisy ripple model the random
initial distribution quickly converges towards an exponentia
scaling function@Fig. 8~a!; solid lines#. The monodisperse
initial condition spreads out and approaches the same for
@Fig. 8~b!; solid lines#. Again, the mean ripple size grows as
^m&(t);et for both initial distributions.

Since the deterministic model behaves in a similar mann
as the noisy one, we conclude that, in contrast to the ca
g,0, the noise is irrelevant. The discrepancy between th
mean-field theory and the full deterministic system sugges
that the spatial fluctuations are important, as is often the ca
for low-dimensional systems. In particular, the numerical re
sults indicate that, in contrast to the mean-field prediction
the behavior of the full system is universal with respect t
the initial ripple size distribution. This universality is pro-
duced also by another type of mean-field theory@25,26#,
which is more appropriate for the analysis of high-
dimensional systems.

B. Coarsening law for 0ËgË1

As the mean-field equation is not readily solvable forg
Þ1 and probably would not describe the problem correctl
anyway, here we present a simple scaling argument for th
growth of the mean ripple size in the regime 0,g,1. We
start from the observation that in the linearly unstable cas
@G8(l).0#, predominantly every second ripple grows and
every second one shrinks@4#. Therefore we may consider a
simplified system consisting of two ripples of initial sizes
l1

0.l2
0. We calculate the timet* at which the average size

FIG. 8. The complements of the cumulative ripple size distribu
tion for g51. ~a! The distributions for random~exponential! initial
distribution with noisy ~deterministic! dynamics are denoted by
solid ~dashed! lines. ~b! The distributions for monodisperse~flat!
initial distribution with noisy~deterministic! dynamics are denoted
by solid ~dashed! lines. The curves are shown at timest51, . . . ,9
and the thick solid lines in both figures represent the functio
e2m/^m&.
04-7
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has doubled. It is given by the conditionsl1(t* )5l1
01l2

0

and l2(t* )50. Since the mass is conserved we havel̄
ªl1(t)1l2(t)5const.

Applying Eq. ~1! gives

l̇15l1
g2l2

g ,

l̇25l2
g2l1

g , ~23!

where the dot denotes derivative with respect to time. T
solution is implicitly given byl2(t)5l̄2l1(t) and

t5E
l1

0

l1(t) dx

xg2~ l̄2x!g
, ~24!

which together with the definition oft* implies the homoge-
neity relation

t* ~al1
0 ,al̄ !5a12gt* ~l1

0 ,l̄ !. ~25!

Assuming that the evolving ripple size distribution is go
erned by a single size scale, it follows that the doubling tim
depends on the mean ripple size ast* ;^l&12g. The inverse
of the doubling time is the growth rate of^l&. Hence we may
write

d^l&~ t !

dt
;

1

t*
^l&~ t !, ~26!

which yields^l&(t);tz with z51/(12g). This is confirmed
by simulations, which givez51.3260.02 and 1.9860.03 for
g50.25 and 0.50, respectively. We also numerically check
the universal scaling behavior of the ripple size distributi
for 0,g,1, but in this region the scaling function is mor
complicated than a simple exponential.

V. CONCLUSIONS

In this paper we have studied a one-dimensional mo
for sand ripple evolution, where mass is transferred betw
neighboring sites with algebraic rates, and sites contain
no mass are removed from the system~ripple extinction!. As
the rates depend only on the site to which the mass is tra
ferred, the system is similar to a zero-range process. Thus
steady state in the absence of ripple extinction is charac
ized by a product measure. Asymptotically this continues
hold for algebraically decaying mass transfer rates (g,0),
since the extinctions are exponentially rare at late times. A
consequence the average ripple size grows to leading o
logarithmically slowly with the prefactor21/g.

For g,0 the approach to the steady state product m
sure is algebraic. The correlations between masses of ne
boring ripples decay universally, i.e., independent of the i
tial distribution, as t21/2 and t22/3 for symmetric and
asymmetric mass transfer, respectively. In the asymme
case the asymptotic regime is preceded by a long crosso
wheret21/2 decay is observed.

For algebraically growing robber functions (g.0) the
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coarsening is driven by the linear instability of the homog
neous state. Ripple extinctions become frequent, and
product measure is no longer relevant. The average ri
size grows algebraically ast1/(12g) for 0,g,1. The behav-
ior at g50 is discontinuous sincêm&(t);t1/2 for g50,
which follows from the mapping to coalescing random wa
ers. Forg51, ^m&(t);et and the scaling function of th
ripple size distribution appears to be a simple exponen
The dynamical noise, which is necessary to have coarse
for g<0, is irrelevant forg.0. The mean-field theory de
veloped forg51 reproduces the exponential growth of t
mean ripple size, but is insufficient to describe the univer
ity of the growth law and the ripple size distribution which
observed numerically.

It is interesting to compare the results to the behavio
one-dimensional cluster-cluster aggregation. Recall that
model treated here can be mapped to cluster-cluster agg
tion with hopping rates of clusters depending algebraic
on the distance between them~Sec. II B!. When the hopping
rates depend asG(m);mg on the massesof clusters, the
growth of the average cluster size is algebraic with^m&(t)
;t1/(22g) for all g,2 @16#. Thus the behavior for non
negative values ofg is rather similar in the two models, bu
for g,0 one finds a drastic difference due to the repuls
interaction between clusters in the ripple model.

We conclude by adducing some open problems for fut
studies. One of the most interesting issues is to unders
the coarsening and the final ripple size selection in the c
of a nonmonotonic robber function. This has direct appli
tions in the coarsening of vortex ripples, where the rob
function has recently been measured@2#. Initially these sys-
tems are in the unstable regime, where the transfer func
is monotonically increasing. As we have seen in the pre
paper, even this is a harder problem than the case wher
dominant contribution to coarsening comes from the dyna
cal fluctuations. For nonmonotonic robber functions o
needs an understanding of both coarsening mechani
Therefore the starting point into this direction would be
better understand theg.0 case.
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APPENDIX: CALCULATION OF MASS
DISTRIBUTIONS FOR gÄÀ1 AND À2

Here we calculate the explicit form of the mass distrib
tion
4-8
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p~m!5p0am )
i 51

m21

G~ i !5p0am@~m21!! #g, ~A1!

for G(m)5mg in the casesg521 and22. For m51 the
product in Eq.~A1! is defined to be unity, and we set
(21)!51. The normalization condition(m50

` p(m)51
gives

p~m!5H ~11aea!21am/~m21!! for g521

I 0
21~2Aa!am21/@~m21!! #2 for g522,

~A2!

whereI n(x) is the modified Bessel function of the first kind.
The parametera is related to the expectation value^m&
5(m50

` mp(m) by

^m&5H a~a11!ea/~11aea! for g521

11AaI 1~2Aa!/I 0~2Aa! for g522.
~A3!

Using the expansionI n(x)5ex/A2px1O(1/x) for a→`,
these formulas simplify tô m&'a and ^m&'Aa for g
521 and22, respectively. Hence for^m&→` the distribu-
tions become

p~m!'H e2^m&^m&m21/~m21!! for g521

2Ape22^m&^m&2m23/2/@~m21!! #2 for g522,
~A4!

which are of the general form indicated in Eq.~8!.
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